Complementarity of delta opioid ligand pharmacophore and receptor models.
نویسنده
چکیده
The elaboration of a pharmacophore model for the delta opioid receptor selective ligand JOM-13 (Tyr-c[D-Cys-Phe-D-Pen]OH) and the parallel, independent development of a structural model of the delta receptor are summarized. Although the backbone conformation of JOM-13's tripeptide cycle is well defined, considerable conformational lability is evident in the Tyr(1) residue and in the Phe(3) side chain, key pharmacophore elements of the ligand. Replacement of these flexible features of the ligand by more conformationally restricted analogues and subsequent correlation of receptor binding and conformational properties allowed the number of possible binding conformations of JOM-13 to be reduced to two. Of these, one was chosen as more likely, based on its better superposition with other conformationally constrained delta receptor ligands. Our model of the delta opioid receptor, constructed using a general approach that we have developed for all rhodopsin-like G protein-coupled receptors, contains a large cavity within the transmembrane domain that displays excellent complementarity in both shape and polarity to JOM-13 and other delta ligands. This binding pocket, however, cannot accommodate the conformer of JOM-13 preferred from analysis of ligands, alone. Rather, only the "alternate" allowed conformer, identified from analysis of the ligands but "disfavored" because it does not permit simultaneous superposition of all pharmacophore elements of JOM-13 with other delta ligands, fits the binding site. These results argue against a simple view of a single, common fit to a receptor binding site and suggest, instead, that at least some binding site interactions of different ligands may differ.
منابع مشابه
Discovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملMolecular docking study of Papaver alkaloids to some alkaloid receptors
Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...
متن کاملDiscovery of the First Small-Molecule Opioid Pan Antagonist with Nanomolar Affinity at Mu, Delta, Kappa, and Nociceptin Opioid Receptors
The trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine scaffold is a known pharmacophore for mu opioid (MOP), kappa opioid (KOP), and delta opioid (DOP) receptor antagonists; however, it has not been explored in nociceptin opioid (NOP/ORL-1) receptor ligands. We recently found that the selective KOP antagonist JDTic, (3R)-7-hydroxy-N-((1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperi...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملDevelopment and validation of opioid ligand-receptor interaction models: the structural basis of mu vs delta selectivity.
Opioid receptor binding conformations for two structurally related, conformationally constrained tetrapeptides, JOM-6 ( micro receptor selective) and JOM-13 (delta receptor selective), were deduced using conformational analysis of these ligands and analogs with additional conformational restrictions. Docking of these ligands in their binding conformations to opioid receptor structural models, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biopolymers
دوره 51 6 شماره
صفحات -
تاریخ انتشار 1999